: Check out the following pages that have been added and/or updated for Howth Tides, Weather Warnings, Sea Area Forecasts, Marine Warnings & Sea Crossings Forecasts.

Space Weather Observations, Alerts, and Forecast

All weather on Earth, from the surface of the planet out into space, begins with the Sun. Space weather and terrestrial weather (the weather we feel at the surface) are influenced by the small changes the Sun undergoes during its solar cycle. These changes can also potentially impact GPS systems, along with radio and satellite communications.

Various government and non-governmental agencies around the world study space weather changes in order to understand and predict their impacts going forward, and often make this data freely available.

The data on this page has been taken from these freely available sources.

NOTE: Clicking on many of the images below will take you to the source website for that image.

Real Time Images of the Sun

Click for time-lapse image of the sun
SOHO EIT 195 image of the sun
SOHO EIT 284 image of the sun
SOHO EIT 304 image of the sun
SDO/HMI Continuum
SDO/HMI Continuum Image of the Sun
SDO/HMI Magnetogram
Latest SDO/HMI Magnetogram image of the Sun
Latest LASCO C2 image of the Sun
Latest LASCO C3 image of the Sun

The sun is constantly monitored for sun spots and coronal mass ejections. EIT (Extreme ultraviolet Imaging Telescope) images the solar atmosphere at several wavelengths, and therefore, shows solar material at different temperatures. In the images taken at 304 Angstrom the bright material is at 60,000 to 80,000 degrees Kelvin. In those taken at 171 Angstrom, at 1 million degrees. 195 Angstrom images correspond to about 1.5 million Kelvin, 284 Angstrom to 2 million degrees. The hotter the temperature, the higher you look in the solar atmosphere.

Latest time-lapse SOHO EIT 304 image

Real Time Solar Corona LASCO Images

Latest LASCO C2 Solar Corona
Images of the solar corona
Large Angle and Spectrometric Coronagraph (LASCO).
Latest LASCO C3 Solar Corona
Images of the solar corona
Large Angle and Spectrometric Coronagraph (LASCO).

LASCO (Large Angle Spectrometric Coronagraph) is able to take images of the solar corona by blocking the light coming directly from the Sun with an occulter disk, creating an artificial eclipse within the instrument itself. The position of the solar disk is indicated in the images by the white circle. The most prominent feature of the corona are usually the coronal streamers, those nearly radial bands that can be seen both in C2 and C3. Occasionally, a coronal mass ejection can be seen being expelled away from the Sun and crossing the fields of view of both coronagraphs. The shadow crossing from the lower left corner to the center of the image is the support for the occulter disk.

C2 images show the inner solar corona up to 8.4 million kilometers (5.25 million miles) away from the Sun.

C3 images have a larger field of view: They encompass 32 diameters of the Sun. To put this in perspective, the diameter of the images is 45 million kilometers (about 30 million miles) at the distance of the Sun, or half of the diameter of the orbit of Mercury. Many bright stars can be seen behind the Sun.

Real-Time Solar Wind

Real-Time Solar Wind
Graph showing Real-Time Solar Wind
Real-Time Solar Wind data broadcast from either the NOAA DSCOVR satellite or NASA's ACE satellite.

Real-Time Solar Wind data refers to data from any spacecraft located upwind of Earth, typically orbiting the L1 Lagrange point, that is being tracked by the Real-Time Solar Wind Network of tracking stations. The NOAA DSCOVR satellite became the operational RTSW spacecraft on July 27, 2016 at 1600UT (noon EDT, 10am MDT).

SWPC maintains the ability to instantaneously switch the spacecraft that provides the RTSW data. During times of outages in DSCOVR data or problems with the data, this page may instead display the data from the NASA/ACE spacecraft.

WSA-Enlil Solar Wind Prediction
Move your cursor over the timeline to 'scrub' through the forecast.

WSA-Enlil is a large-scale, physics-based prediction model of the heliosphere, used by the Space Weather Forecast Office to provide 1-4 day advance warning of solar wind structures and Earth-directed coronal mass ejections (CMEs) that cause geomagnetic storms. Solar disturbances have long been known to disrupt communications, wreak havoc with geomagnetic systems, and to pose dangers for satellite operations.

Solar Cycle

The Solar Cycle is observed by counting the frequency and placement of sunspots visible on the Sun. The forecast comes from the Solar Cycle Prediction Panel representing NOAA, NASA and the International Space Environmental Services (ISES). The Prediction Panel forecasts the sunspot number expected for solar maximum and has predicted a maximum of 115 occurring in July, 2025. The error bars (high/low) on this prediction mean the panel expects the cycle maximum could be between 105-125 with the peak occurring between November 2024 and March 2026, as shown in the chart below.

Data sourced and prepared by the U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center (SWPC). Data source file


  • S.I.D.C. Brussels International Sunspot Number, Data Files.
  • Penticton, B.C., Canada: 10.7cm radio flux values (sfu), Data Files.
  • Predicted values are based on the consensus of the Solar Cycle 25 Prediction Panel​.

Further information:

Auroral Activity - 30 minute forecast - extrapolated from NOAA POES

This forecast provides a short-term glimpse into the location and intensity of the aurora. Developed using the OVATION model, it offers a 30 to 90-minute projection of where and how intense the aurora will be. The forecast lead time corresponds to the duration it takes for solar wind to travel from the L1 observation point to Earth.

The two maps below depict Earth’s North and South poles. The aurora’s brightness and position are typically represented as a green oval centered around Earth’s magnetic pole. When the aurora is expected to intensify, these green ovals transition to red. Meanwhile, the sunlit side of Earth is indicated by lighter blue ocean hues and the continents’ paler colors. Auroras can be witnessed somewhere on Earth shortly after sunset or just before sunrise. However, they remain invisible during daylight hours. Remarkably, the aurora need not be directly overhead; it can be seen from distances of up to 1000 km when conditions align and its brilliance shines.

The aurora serves as an indicator of current geomagnetic storm conditions, offering situational awareness for various technologies. It directly affects HF radio communication and GPS/GNSS satellite navigation. Additionally, it’s closely linked to ground-induced currents that impact electric power transmission.

Northern Hemisphere Auroral Map
Current Northern hemispheric power input map - click for animated view

Southern Hemisphere Auroral Map
Current Southern hemispheric power input map - click for animated view

Instruments on board the NOAA Polar-orbiting Operational Environmental Satellite (POES) continually monitor the power flux carried by the protons and electrons that produce aurora in the atmosphere. SWPC has developed a technique that uses the power flux observations obtained during a single pass of the satellite over a polar region (which takes about 25 minutes) to estimate the total power deposited in an entire polar region by these auroral particles. The power input estimate is converted to an auroral activity index that ranges from 1 to 10.

Radio Communications Impact

D-Region Absorption

D-Region Absorption Prediction
Latest D-Region Absorption Prediction Model

The D-Region Absorption Product addresses the operational impact of the solar X-ray flux and SEP events on HF radio communication. Long-range communications using high frequency (HF) radio waves (3 - 30 MHz) depend on reflection of the signals in the ionosphere. Radio waves are typically reflected near the peak of the F2 layer (~300 km altitude), but along the path to the F2 peak and back the radio wave signal suffers attenuation due to absorption by the intervening ionosphere. The D-Region Absorption Prediction model is used as guidance to understand the HF radio degradation and blackouts this can cause.

VHF and HF Band Conditions

3-day Solar-Geophysical Forecast

Product: 3-Day Forecast - Issued: 2024 May 26 0030 UTC
Prepared by the U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center.

Geomagnetic Activity Observation and Forecast

The greatest observed 3 hr Kp over the past 24 hours was 3 (below NOAA Scale levels). The greatest expected 3 hr Kp for May 26-May 28 2024 is 4.00 (below NOAA Scale levels).

NOAA Kp index breakdown May 26-May 28 2024
May 26May 27May 28

Rationale: No G1 (Minor) or greater geomagnetic storms are expected. No significant transient or recurrent solar wind features are forecast.

Solar Radiation Activity Observation and Forecast

Solar radiation, as observed by NOAA GOES-18 over the past 24 hours, was below S-scale storm level thresholds.

Solar Radiation Storm Forecast for May 26-May 28 2024
May 26May 27May 28
S1 or greater5%5%5%

Rationale: No S1 (Minor) or greater solar radiation storms are expected. No significant active region activity favorable for radiation storm production is forecast.

Radio Blackout Activity and Forecast

No radio blackouts were observed over the past 24 hours.

Radio Blackout Forecast for May 26-May 28 2024
May 26May 27May 28
R3 or greater5%5%5%

Rationale: A chance for R1 (Minor) blackouts exists on 26-28 May as Region 3679 rotates beyond the western limb.


Space Weather Images and Information (excluded from copyright) courtesy of:
NOAA / NWS Space Weather Prediction Center
Mauna Loa Solar Observatory (HAO/NCAR)

Space Weather links:
3-Day Forecast of Solar and Geophysical Activity
Space Weather Overview
LASCO Coronagraph
Real-Time Solar Wind
Space Weather Advisory Outlooks
Space Weather Forecast Disussions
Space Weather Alerts, Watches and Warnings
Solar and Heliospheric Observatory (SOHO)
The Very Latest SOHO Images

Powered by Space Weather PHP script by Mike Challis
additions by Martin of Hebrides Weather, Grant Miles of CamWX, and Ken True of Saratoga Weather
with 3-day Solar-Geophysical Forecast text formatting by Jeremy Dyde of Jerbils Weather